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a b s t r a c t

This paper proposes two low-complexity two-dimensional channel estimators for MIMO-

OFDM systems derived from a joint time–frequency channel estimator. The estimators

exploit both time and frequency correlations of the wireless channel via use of Slepian-

basis expansions. The computational saving comes from replacing a two-dimensional

Slepian-basis expansion with two serially concatenated one-dimensional Slepian-basis

expansions. Performance in terms of normalized mean square error (NMSE) vs. signal-to-

noise ratio (SNR) is analyzed via numerical simulations and compared with the original

estimator. The analysis of the performance takes into account the impact of both system

and channel parameters. The estimators are finally tested when used within the loop of an

iterative receiver for MIMO-OFDM systems.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Design of next-generation wireless systems is focusing
mainly on the use of multiple-input multiple-output
(MIMO) channels [26] with orthogonal frequency-division
multiplexing (OFDM) [8] providing MIMO-OFDM systems
[24]. Iterative receivers [28] have shown to be very
attractive from complexity-performance point of view,
and have been designed [1,17,19,32] such to perform also
pilot-assisted channel estimation [2]. In this paper we focus
on channel estimation for MIMO-OFDM systems to be
performed within the loop of an iterative receiver.

Channel estimation for OFDM systems has been pro-
posed via singular value decomposition [4] and via discrete
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Fourier transform [5] exploiting frequency correlation, and
via two-dimensional Wiener filtering [9] exploiting time
and frequency correlations. Robustness to channel-statis-
tics mismatch is analyzed in [13], while complexity issues
have been taken into account also via parametric channel
modeling [29]. Recently, a low-complexity channel esti-
mator for MIMO-OFDM systems has been proposed
exploiting the angle-domain representation [10], in which
the trade-off between performance and complexity cru-
cially depends on the knowledge of the correlation among
the various angle-frequency domain beams.

Basis expansion models [7] have shown to be very
effective in dealing with time-variant channels. Exploiting
the works on discrete prolate spheroidal (DPS) sequences
[23], a robust low-complexity channel estimator has been
proposed [31] and applied in both iterative receivers for
multi-carrier code-division multiple-access systems [32]
and iterative receivers for MIMO-OFDM systems [17,19].
Time and frequency variations of realistic wireless chan-
nels have been taken into account via the multidimensional
DPS sequences [22,27] in the extensions proposed in [3,33]
for multi-carrier code-division multiple-access systems, in
[11] for MIMO systems, and in [18] for MIMO-OFDM
systems.
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Finally, alternative approaches to channel estimation
[6,21,30] are based on blind-identification techniques
exploiting higher order statistics of received signals. Blind
channel estimation saves spectral efficiency with respect to
pilot-assisted channel estimation at the cost of less reliable
estimates.

In this paper we recall the estimator proposed in [18] and
propose two similar approximations, comparing their perfor-
mance and complexity on the basis of channel characteristics.
The benefits of the two-dimensional Slepian-based approach
proposed in [18] are (i) robustness—no assumption on channel
statistics is needed but knowledge of the maximum delay
spread and maximum Doppler spread; (ii) low complexity—-

less coefficients to be estimated due to the concentration of the
space; (iii) accuracy—two-dimensional processing exploits
both time and frequency correlations. Such an estimator is
named in the following joint channel estimator (JCE) as it
performs joint time–frequency processing. In order to further
reduce the computational complexity, which can still remain
high for channels with large Doppler and/or delay spreads, we
design two serial channel estimators (SCEs) approximating the
two-dimensional time–frequency processing via serially con-
catenated one-dimensional processing: (i) a serial time–
frequency channel estimator (STFCE) in which time processing
is performed for each subcarrier and then frequency proces-
sing is applied; (ii) a serial frequency–time channel estimator
(SFTCE) in which frequency processing is performed for each
OFDM block and then time processing is applied.

As we here mainly focus on channel estimation, when
designing and testing the channel estimators all the trans-
mitted symbols are assumed to be known at the receiver.
However, in a real iterative receiver only pilot symbols are
available at the first iteration, while soft estimates from the
decoder are available at successive iterations to replace
(initially unknown) data symbols. Soft estimates will con-
verge, in a well-designed receiver, to the correct values of data
symbols, thus the performance of the channel estimator
shown represents the maximum achievable performance.
Before concluding the paper, a final test of the channel
estimator will be presented by showing the performance an
iterative receiver in which both transmitted symbols (exclud-
ing pilots) and channel coefficients need to be estimated.
Although, we are not exploring the problem of optimal pilot
placement [14,25], affecting mainly the performance of the
channel estimator at the first iteration, it is worth noticing that
the proposed estimators allow flexible pilot patterns. Usually,
block-type (for some given time slots all subcarriers contain
pilots) and comb-type (for some given subcarriers all time
slots contain pilots) patterns are considered, while the
proposed estimators allow, due to the two-dimensional
processing, various pilot patterns that sparsely sample the
time–frequency domain as long as they obey the limits of the
sampling theorem set by delay spread and Doppler spread.

The contributions of this paper are mainly:
�
 the design of two low-complexity channel estimators
that fit the same characteristics of the estimator in [18];

�

1 Both for pilot and data symbols.
the analysis of their performance with respect to the
channel characteristics (such as delay and Doppler
spreads) and system parameters (such as number of
subcarriers and blocks in a frame);
�
 the verification of their performance in an iterative
receiver for MIMO-OFDM systems.

The rest of the paper is organized as follows: Section 2
introduces the system model; the Slepian-basis expansion
models are described in Section 3; the channel estimators
are presented in Section 4; Section 5 shows the perfor-
mance obtained via computer simulation in terms of
normalized mean square error (NMSE) vs. signal-to-noise
ratio (SNR), as well as the performance in terms of bit error
rate (BER) vs. SNR of an iterative receiver for MIMO-OFDM
systems employing such estimators within the loop; some
concluding remarks are given in Section 6.

Notation: Column vectors (resp. matrices) are denoted
with lower-case (resp. upper-case) bold letters; an (resp.
An,m denotes the nth (resp. (n,m)th) element of vector a
(resp. matrix A); diagðaÞ denotes a diagonal matrix whose
main diagonal is a; IN denotes the N�N identity matrix;
ON denotes the N�N null matrix; iðn,m,‘Þ

N,M,L denotes the
ðððn�1ÞMþm�1ÞLþ‘Þth column of INML; eN denotes a vector
of length N whose components are 1; oN denotes a vector of
length N whose components are 0; Ef:g, (.)n, (.)T and (.)H

denote expectation, conjugate, transpose, and conjugate
transpose operators; â denotes an estimate of a; ~a denotes
the expected value of a; dn,m is the Kronecker delta; �
denotes the Kronecker product; dae denotes the smallest
integer value greater than or equal to a; j denotes the
imaginary unit; N Cðl,RÞ denotes a circular symmetric
complex normal distribution with mean vector l and
covariance matrix R; the symbol � means ‘‘distributed as’’.

2. Analytical model

We assume a wireless MIMO-OFDM system with K

transmit antennas and N receive antennas. For data trans-
mission, each transmit antenna uses OFDM with M sub-
carriers. Data are assumed to be encoded within a frame
composed of S OFDM blocks, and each OFDM block is
composed of M symbols. In the following, for the generic
frame, xk[m,s] denotes the (frequency domain) symbol1

transmitted by the kth transmit antenna on the mth
subcarrier during the transmission of the sth OFDM block;
Hn,k[m,s] denotes the (frequency domain) channel coeffi-
cient between the kth transmit antenna and the nth receive
antenna on the mth subcarrier during the transmission of
the sth OFDM block; wn[m,s] denotes the (frequency

domain) additive noise at the nth receive antenna on the
mth subcarrier during the transmission of the sth OFDM
block; rn[m,s] denotes the (frequency domain) received
signal at the nth receive antenna on the mth subcarrier
during the transmission of the sth OFDM block.

Optimal pilot placement falls beyond the scope of this
paper. When using the STFCE we assume that pilot symbols
are distributed in the frame according to a bidimensional
grid in which Sp OFDM blocks present Mp pilot symbols
each, thus having Lp=MpSp pilot symbols per frame, i.e. a
pilot-to-symbols ratio (PSR) equals to Lp/L, with L=MS

denoting the number of symbols in a single frame. More
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Fig. 1. Data (3) and pilot (�) symbols in a frame with M=12, S=20, Mp=4,

Sp=5. Pilots placement for (a) the STFCE and (b) the SFTCE.
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specifically, we assume that the OFDM blocks in which
pilots are present are given by the following set of indexes
fdðð2s�1ÞSÞ=2Speg

Sp

s ¼ 1. Also, referring to the sth OFDM block
among those containing pilots, pilot symbols are distrib-
uted according to the following set of frequency indexes
fmodðdðð2m�1ÞMÞ=2Mpeþs�1,MÞg

Mp

m ¼ 1, i.e. for a given
OFDM block pilot symbols are placed into the subcarriers
following those considered for the previous OFDM block.
This choice guarantees that each subcarrier has at least one
pilot symbol, thus assuring that the STFCE (explained in
Section 4) may work correctly. Having at least one pilot
symbol for each subcarrier is crucial in the first iteration
when data symbols are unbiased (i.e. set to 0) and thus
channel estimation only relies on pilot symbols.

Analogously, when using the SFTCE we assume that
pilot symbols are distributed in the frame according to a
bidimensional grid in which Mp subcarriers present Sp pilot
symbols each, again PSR =Lp/L. More specifically, we
assume that the subcarriers in which pilots are present
are given by the following set of indexes fdðð2m�1ÞMÞ=
2Mpeg

Mp

m ¼ 1. Also, referring to the mth subcarrier among
those containing pilots, pilot symbols are distributed
according to the following set of time indexes
fmodðdðð2s�1ÞSÞ=2Speþm�1,SÞg

Sp

s ¼ 1, i.e. for a given sub-
carrier pilot symbols are placed into the OFDM blocks
following those considered for the previous subcarrier. This
choice guarantees that each OFDM block has at least one
pilot symbol, thus assuring that the SFTCE (explained in
Section 4) may work correctly for the same reason as
for STFCE.

Fig. 1 shows a frame with M=12 subcarriers, S=20
OFDM blocks, Mp=4 pilots along frequency and Sp=5 pilots
along time, for both STFCE and SFTCE.

We denote the transmitted vector, the channel matrix,
the noise vector, and the received vector as

x½m,s� ¼ ðx1½m,s�, . . . ,xK ½m,s�ÞT, ð1Þ

H½m,s� ¼

H1,1½m,s� . . . H1,K ½m,s�

^ & ^

HN,1½m,s� . . . HN,K ½m,s�

0
B@

1
CA, ð2Þ

w½m,s� ¼ ðw1½m,s�, . . . ,wN ½m,s�ÞT �N Cð0,s2
wINÞ, ð3Þ

r½m,s� ¼ ðr1½m,s�, . . . ,rN½m,s�ÞT, ð4Þ

respectively, and assume that the length of the cyclic prefix
(Lcp) exceeds the channel delay spread. Then, the discrete-
time model for the received signal is

r½m,s� ¼H½m,s�x½m,s�þw½m,s�: ð5Þ

It is worth noticing that m and s represent frequency-
variation and time-variation, respectively. The channel is
considered time–frequency variant meaning that it does
not remain constant within the frame: different blocks
experience different correlated attenuations, and different
subcarriers within the same block experience different
correlated attenuations.
3. Slepian-basis expansion

We consider a wireless channel with maximum normal-

ized delay spread ZðdÞmax and maximum normalized Doppler

spread nðDÞmax, i.e. for each transmit/receive antennas pair,

½�ZðdÞmax,þZðdÞmax� � ½�n
ðDÞ
max,þnðDÞmax� is the rectangular support

of the scattering function

Hn,kðZ,nÞ ¼
XM

m ¼ 1

XS

s ¼ 1

Hn,k½m,s�expð�j2pðZmþnsÞÞ: ð6Þ

It is worth noticing that Z and n represent delay and
Doppler as they correspond via a Fourier transformation
to frequency index m and time index s, respectively.

Let v‘½m� and lðdÞ‘ denote the mth sample of the ‘th DPS
sequence and the corresponding eigenvalue, for the inter-
val m=1,y,M and bandwidth extension ZðdÞmax; and analo-
gously ui[s] and lðDÞi the sth sample of the ith DPS sequence
and the corresponding eigenvalue, for the interval s=1,y,S
and bandwidth extension nðDÞmax, respectively, defined as the
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solutions to

XM
mu ¼ 1

2ZðdÞmaxsincð2ZðdÞmaxðmu�mÞÞv‘½mu� ¼ lðdÞ‘ v‘½m�, ð7Þ

XS

su ¼ 1

2nðDÞmaxsincð2nðDÞmaxðsu�sÞÞui½su� ¼ lðDÞi ui½s�: ð8Þ

The DPS sequences have resulted those bandlimited
sequences simultaneously most concentrated in a finite
time interval [23].

As they distinguish the two dimensions of the wireless
channel,2 v‘½m� and ui[s] will be denoted frequency-DPS
(f-DPS) and time-DPS (t-DPS) sequences, respectively. In
[18] the following two-dimensional Slepian expansion
(making use of an orthogonal basis based on DPS sequences)

Hn,k½m,s� 	
XL

‘ ¼ 1

XI

i ¼ 1

cn,k½‘,i�ui½s�v‘½m�, ð9Þ

has been used in order to design a channel estimator for
time–frequency variant MIMO-OFDM channels, where

cn,k½‘,i� is the ð‘,iÞth ‘‘delay-Doppler Slepian coefficient’’

for the link between the kth transmit antenna and the

nth receive antenna, MðdÞrLrM and SðDÞr IrS, being

MðdÞ ¼ d2ZðdÞmaxMeþ1 and SðDÞ ¼ d2nðDÞmaxSeþ1 the approxi-
mate signal space extensions. The concentration of the
space [23], along both delay and Doppler dimensions, is

due to the eigenvalues lðdÞ‘ (resp. lðDÞi ) becoming rapidly

negligible for ‘42ZðdÞmaxM (resp. i42nðDÞmaxS).
In order to obtain STFCE we rearrange (9) as follows:

Hn,k½m,s� 	
XI

i ¼ 1

jðDÞn,k½m,i�ui½s�, ð10Þ

jðDÞn,k½m,i� 	
XL

‘ ¼ 1

cn,k½‘,i�v‘½m�, ð11Þ

while in order to obtain SFTCE we rearrange (9) as follows:

Hn,k½m,s� 	
XL

‘ ¼ 1

jðdÞn,k½‘,s�v‘½m�, ð12Þ

jðdÞn,k½‘,s� 	
XI

i ¼ 1

cn,k½‘,i�ui½s�, ð13Þ

where jðdÞn,k½‘,s� and jðDÞn,k½m,i� are the ‘th ‘‘delay Slepian

coefficient’’ at the sth time slot and the ith ‘‘Doppler–
Slepian coefficient’’ at the mth subcarrier, respectively, for
the link between the kth transmit antenna and the nth
receive antenna. The idea is to perform estimation along
frequency and time domains separately in a concatenated
way. More specifically, (10) and then (11) are used in order
to perform estimation along time and then along fre-
quency, while (12) and then (13) to perform estimation
along frequency and then along time.

In the following, the vectors collecting the values of the
f-DPS sequences for a given frequency and the corresponding
2 Frequency and time, or, equivalently, delay and Doppler.
eigenvalues are denoted

v½m� ¼ ðv1½m�, . . . ,vL½m�Þ
T, ð14Þ

kðdÞ ¼ ðlðdÞ1 , . . . ,lðdÞL Þ
T, ð15Þ

while the vectors collecting the values of the t-DPS sequences
for a given time and the corresponding eigenvalues are
denoted

u½s� ¼ ðu1½s�, . . . ,uI½s�Þ
T, ð16Þ

kðDÞ ¼ ðlðDÞ1 , . . . ,lðDÞI Þ
T: ð17Þ

Also, we will denote

V ¼ ðv½1�, . . . ,v½M�ÞT, ð18Þ

U ¼ ðu½1�, . . . ,u½S�ÞT: ð19Þ

4. Channel estimation

JCE proposed in [18] was based on the following signal
model for channel estimation

r¼Nwþw, ð20Þ

where

r½:; s� ¼ ðrT½1,s�, . . . ,rT½M,s�ÞT, ð21Þ

r¼ ðrT½:;1�, . . . ,rT½:; S�ÞT, ð22Þ

where

N½m,s� ¼ IN � ðx½m,s� � v½m� � u½s�ÞT, ð23Þ

N½:; s� ¼ ðNT
½1,s�, . . . ,NT

½M,s�ÞT, ð24Þ

N¼ ðNT
½:;1�, . . . ,NT

½:; S�ÞT, ð25Þ

where

wn,k½‘; :� ¼ ðcn,k½‘,1�, . . . ,cn,k½‘,I�Þ
T, ð26Þ

wn,k ¼ ðw
T
n,k½1; :�, . . . ,w

T
n,k½L; :�Þ

T, ð27Þ

wn ¼ ðw
T
n,1, . . . ,wT

n,K Þ
T, ð28Þ

w¼ ðwT
1, . . . ,wT

NÞ
T, ð29Þ

and where

w½:; s� ¼ ðwT½1,s�, . . . ,wT½M,s�ÞT, ð30Þ

w¼ ðwT½:;1�, . . . ,wT½:; S�ÞT: ð31Þ

JCE assumes the following expression (see [18] for details)

ŵ ¼ ð ~N
H
D�1 ~NþC�1

c Þ
�1 ~N

H
D�1r, ð32Þ

where

h½m,s� ¼ W½m,s�eN , ð33Þ

h½:; s� ¼ ðhT
½1,s�, . . . ,hT

½M,s�ÞT, ð34Þ

H¼ diagðh½:;1�T, . . . ,hT
½:; S�ÞT, ð35Þ

D¼Hþs2
wINMS, ð36Þ
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Cc ¼ EfwwH
g

¼
1

2ZðdÞmax

1

2nðDÞmax

diagðeNK � kðdÞ � kðDÞÞ: ð37Þ

The complexity of the estimator is dominated by the
inversion of a square matrix of size NKLI. As for ~N ¼ EfNg,
it is worth noticing that an iterative receiver computes the
expectation by the soft estimates from the soft-input-soft-
output decoders, and also if both pilots and data symbols
are known then H¼ONMS, while in general it accounts for
the variance of the data symbols on the basis of the soft
estimates available at the receiver.

4.1. STFCE

4.1.1. Time-domain expansion (exploiting Doppler

dimension)

The time-domain estimator is based on (10). From (5),
for a given subcarrier m, the signal model used for channel
estimation in time domain is

r½m; :� ¼N½m; :�uðDÞ½m; :�þw½m; :�, ð38Þ

where

r½m; :� ¼ ðrT½m,1�, . . . ,rT½m,S�ÞT, ð39Þ

N½m,s� ¼ IN � ðx½m,s� � u½s�ÞT, ð40Þ

N½m; :� ¼ ðNT
½m,1�, . . . ,NT

½m,S�ÞT, ð41Þ

uðDÞn,k½m; :� ¼ ðj
ðDÞ
n,k½m,1�, . . . ,jðDÞn,k½m,I�ÞT, ð42Þ

uðDÞn ½m; :� ¼ ðu
ðDÞT
n,1 ½m; :�, . . . ,u

ðDÞT
n,K ½m; :�Þ

T, ð43Þ

uðDÞ½m; :� ¼ ðuðDÞT1 ½m; :�, . . . ,u
ðDÞT
N ½m; :�Þ

T, ð44Þ

w½m; :� ¼ ðwT½m,1�, . . . ,wT½m,S�ÞT, ð45Þ

with an abuse of notation for N½m,s�. Restricting our
attention to linear channel estimators, and omitting the
dependence on subcarrier (m) to simplify notation, we have
the following estimator (see A.1 for details):

ûðDÞ ¼ ð ~N
H
D�1 ~NþC�1

jðDÞ Þ
�1 ~N

H
D�1r, ð46Þ

where

W½m,s� ¼
XK

k ¼ 1

ð1�j ~xk½m,s�j2Þ, ð47Þ

!½m; :� ¼ ðW½m,1�, . . . ,W½m,S�ÞT, ð48Þ

H½m; :� ¼ diagð!½m; :� � eNÞ, ð49Þ

D½m; :� ¼H½m; :�þs2
wINS, ð50Þ

CjðDÞ ¼ EfuðDÞ½m; :�uðDÞH½m; :�g

¼
1

2nðDÞmax

diagðeNK � kðDÞÞ: ð51Þ

The complexity of the estimator is dominated by the
inversion of a square matrix of size NKI. Again ~N ¼ EfNg
is provided by the soft-input-soft-output decoders, and if
both pilots and data symbols are known then H½m; :� ¼ONS,
while in general it accounts for the variance of the data
symbols on the basis of the soft estimates available at the
receiver.

Also, we denote the error of the time-domain estimator

eðDÞ ¼uðDÞ�ûðDÞ, ð52Þ

whose covariance matrix is

CeðDÞ ¼ ð
~N

H
D�1 ~NþC�1

jðDÞ Þ
�1, ð53Þ

as provided by the Bayesian Gauss–Markov theorem [12].

4.1.2. Frequency-domain expansion (exploiting delay

dimension)

For given transmit antenna n, receive antenna k, and
Doppler i, notice that

jðDÞn,k½m,i� ¼ iðn,k,iÞT
N,K ,I uðDÞ½m; :�, ð54Þ

eðDÞn,k½m,i� ¼ iðn,k,iÞT
N,K ,I eðDÞ½m; :�, ð55Þ

thus Doppler–Slepian coefficients and errors from the
time-domain estimator can be rearranged as

/ðDÞn,k½:; i� ¼ ðj
ðDÞ
n,k½1,i�, . . . ,jðDÞn,k½M,i�ÞT, ð56Þ

qðDÞn,k½:; i� ¼ ðe
ðDÞ
n,k½1,i�, . . . ,eðDÞn,k½M,i�ÞT, ð57Þ

where defining

sðDÞ2
ðn,k,iÞ½m; :� ¼ iðn,k,iÞT

N,K ,I CeðDÞ ½m; :�i
ðn,k,iÞ
N,K ,I , ð58Þ

the covariance matrix for the errors results

Cðn,k,iÞ
qðDÞ
¼ diagðsðDÞ2

ðn,k,iÞ½1; :�, . . . ,s
ðDÞ2
ðn,k,iÞ½M; :�Þ: ð59Þ

From (11) and (52), the signal model used for channel
estimation in frequency domain is

/̂
ðDÞ

n,k½:; i� ¼Vwn,k½:; i�þqðDÞn,k½:; i�: ð60Þ

Restricting our attention to linear channel estimators, and
omitting the dependence on receive antenna (n), transmit
antenna (k), and Doppler component (i) to simplify nota-
tion, we have the following estimator (see Section A.2 for
details)

ŵ ¼ ðVHC�1
qðDÞVþC�1

c Þ
�1VHC�1

qðDÞ /̂
ðDÞ

, ð61Þ

where

Ccn,k ½:;i�
¼ Efwn,k½:; i�w

H
n,k½:; i�g

¼
lðDÞi

2nðDÞmax

1

2ZðdÞmax

diagðkðdÞÞ: ð62Þ

The complexity of the estimator is dominated by the
inversion of a square matrix of size L.

4.2. SFTCE

Reversing the role of frequency and time domains, or
equivalently of delay and Doppler dimensions, we can have
an analogous dual estimator. The first step is based on a
frequency-domain expansion, exploiting delay dimension
via (12), and provides an estimator whose complexity is
dominated by the inversion of a square matrix of size NKL.



Table 1
First contribution to the complexity of the estimators.

JCE ðNMSÞðNKð2ZðdÞmaxSÞð2nðDÞmaxMÞþNK2
ð2ZðdÞmaxÞð2nðDÞmaxÞþ1Þ

STFCE ðNSÞðNKð2nðDÞmaxMÞþNK2
ð2nðDÞmaxÞþMÞ

SFTCE ðNMÞðNKð2ZðdÞmaxSÞþNK2
ð2ZðdÞmaxÞþSÞ

Table 2
Second contribution to the complexity of the estimators.

JCE ð4ZðdÞmaxn
ðDÞ
maxÞ

3
ðNKMSÞ3

STFCE Mð2nðDÞmaxÞ
3
ðNKSÞ3þð2nðDÞmaxÞð2Z

ðdÞ
maxÞ

3
ðNKSÞM3

SFTCE Sð2ZðdÞmaxÞ
3
ðNKMÞ3þð2ZðdÞmaxÞð2nðDÞmaxÞ

3
ðNKMÞS3

3 This has been obtained filtering out small-Doppler components.
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The second step is based on a time-domain expansion,
exploiting Doppler dimension via (13), and provides an
estimator whose complexity is dominated by the inversion
of a square matrix of size I.

4.3. One-dimensional estimators

As reference terms, in order to show the gain provided
by time–frequency processing, the performance of two
one-dimensional channel estimators will be also consid-
ered in Section 5. The first one is a time channel estimator
(TCE) that applies Eq. (46) independently for each sub-
carrier, thus exploiting only the time correlation of the
channel. It is the estimator considered in the receiver
analyzed in [17]. The second one is an analogous dual
frequency channel estimator (FCE) working independently
for each block, thus exploiting only the frequency correla-
tion of the channel.

4.4. Complexity

The complexity of each estimator is mainly due to two
contributions: (i) ‘‘data preparation’’, dominated by the
Kronecker products for the signal model when computing
the matrices N, D, and C; (ii) ‘‘coefficient computation’’,
dominated by the matrix inversion for LMMSE estimation.
As for the first contribution we assume that the complexity
of a Kronecker product between two vectors of size M and
N, respectively, isOðMNÞ. As for the second contribution we
assume that the complexity for the inversion of a square
matrix of size N is OðN3Þ, although there exist algorithms
with lower complexity based on QR decomposition.

As for the complexity of JCE, the first contribution comes
from preparing (32), while the second contribution is
related to one single application of (32); thus we simply
consider

CðIÞJCE 	N2KMSLIþNMSþðNKÞ2LI, ð63Þ

CðIIÞJCE 	 ðNKLIÞ3: ð64Þ

As for the complexity of STFCE, the first contribution
comes from preparing (46), while the second contribution
is related to M applications (one per subcarrier) of (46), and
then NKI applications (one per combination of receive
antenna, transmit antenna, and Doppler component) of
(61); thus we simply consider

CðIÞSTF 	N2KMIþNMSþðNKÞ2I, ð65Þ

CðIIÞSTF 	MðNKIÞ3þðNKIÞL3: ð66Þ

As for the complexity of SFTCE we have

CðIÞSFT 	N2KSLþNMSþðNKÞ2L, ð67Þ

CðIIÞSFT 	 SðNKLÞ3þðNKLÞI3, ð68Þ

obtained as the dual case of the complexity of STFCE.
Assuming for the reduced space extensions the follow-

ing approximations L¼ 2ZðdÞmaxM and I¼ 2nðDÞmaxS, we have the
expressions provided by Tables 1 and 2 for the first and the
second contributions, respectively, to the complexity.
It is apparent how for very small spreads SCE has greater
complexity than JCE, rapidly moving to opposite behavior
with increasing spreads. Approximatively, for symmetric

scenarios (N=K, M=S=g, ZðdÞmax ¼ n
ðDÞ
max ¼ B), defining

r1 ¼ ð2BÞg2 and r2 ¼ ð2BÞ
3g2, then the first contribution

(resp. the second contribution) of SCE’s saves computa-
tional complexity with respect to the first contribution
(resp. the second contribution) of JCE if the following
condition holds

r141 ðresp: r241Þ, ð69Þ

the larger r1 and r2, the more saving in computation (see

Appendix B). Analogous conditions may be found for
asymmetric scenarios.

Fig. 2 compares the performance of JCE and both SCE’s
for systems with 2�2 up to 16�16 antennas, with frames
of size 64�64 on channels with normalized spreads
(0.01,0.01), (0.03,0.03), (0.05,0.05).

5. Simulation results

Performance of the various channel estimators is eval-
uated and compared by means of NMSE, computed via
numerical simulations as follows:

dH ¼
EfjHn,k½m,s��Ĥn,k½m,s�j2g

EfjHn,k½m,s�j2g
:

Two typologies of channels are considered, namely: (i)
‘‘square channel’’, presenting a rectangular support in the
delay-Doppler domain; (ii) ‘‘V-stripe channel’’, presenting
two parallel vertical segments as support in the delay-
Doppler domain,3 i.e. stressing the[�shape statistics of the
popular Jakes model for Rayleigh fading [16].

The effects of various combinations of delay spread,
Doppler spread, number of subcarriers, and number of
OFDM blocks, have been analyzed on the channel estima-
tors presented in Section 4, for both square and V-stripe
channels. Systems with K=2 transmit antennas and N=2
receive antennas have been considered. The reference
scenario has the following parameters: M=64 subcarriers,

S=64 OFDM blocks, normalized delay spread ZðdÞmax ¼ 0:05,

normalized Doppler spread nðDÞmax ¼ 0:05. BPSK modulation
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Fig. 2. Computational complexity of JCE and SCE, for M=S=64, in the

following cases: ZðdÞmax ¼ n
ðDÞ
max ¼ 0:01 in blue, ZðdÞmax ¼ n

ðDÞ
max ¼ 0:03 in green,

ZðdÞmax ¼ n
ðDÞ
max ¼ 0:05 in red. (a) First contribution. (b) Second contribution.

(For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

Fig. 3. Increasing ZðdÞmax ¼ nðDÞmax. Performance of the channel estimators for

N=K=2 and M=S=64, in the following cases: (i)ZðdÞmax ¼ nðDÞmax ¼ 0:05 in blue;

(ii) ZðdÞmax ¼ n
ðDÞ
max ¼ 0:07 in green; (iii) ZðdÞmax ¼ n

ðDÞ
max ¼ 0:1 in red. (a) Square

channel. (b) V-stripe channel. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this

article.)
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is considered, and all transmitted symbols are assumed
known at the receiver, thus resembling the best achievable
performance of an iterative receiver, in which data symbols
are replaced with soft estimates fed back from the
decoders.

Fig. 3 shows the effects of increasing both the delay
spread and the Doppler spread, simultaneously. Para-
meters are kept as for the reference scenario, with excep-
tion of ZðdÞmax and nðDÞmax being increased with the constraint of
being equal. Obviously, performance get worse with
increasing delay and Doppler spreads. However, it is
interesting noticing how in the square channel case both
SCEs behave the same and very close to the JCE, while in the
V-stripe channel case, the SFTCE is close to the JCE but the
STFCE is some dB away from it. The reason is that for most
of the Doppler range there is only noise contribution, thus
starting with time-domain expansion is not effective. For
the same reason FCE behaves even better for high SNR.
Similarly, not shown here for brevity, H-stripe channels
(horizontal segments) show a dual behavior with STFCE
close to JCE, SFTCE some dB away, and TCE well performing
at high SNR.

The effect of the delay spread has been analyzed keeping
the parameters as for the reference scenario with exception
of ZðdÞmax being increased. Analogously the effect of the
number of subcarriers has been analyzed keeping the
parameters as for the reference scenario with exception
of M being increased. Also, we have considered the case in
which both ZðdÞmax and M are increased while the remaining
parameters are kept as for the reference scenario. The main
effect is separating performance of SFTCE from JCE. FCE
results better than TCE for low SNR, and vice versa for high
SNR. For brevity, the effects of increasing both the delay
spread and the number of subcarriers are shown in Fig. 4.
Parameters are kept as for the reference scenario, with
exception of ZðdÞmax and M being increased. It is apparent the
gap in performance between SFTCE and JCE. Similarly,
not shown here for brevity, increasing the Doppler spread



Fig. 4. Increasing ZðdÞmax and M. Performance of the channel estimators

for N=K=2, S=64 and nðDÞmax ¼ 0:05, in the following cases: (i) M ¼

64, ZðdÞmax ¼ 0:05 in blue; (ii) M ¼ 80, ZðdÞmax ¼ 0:07 in green; (iii) M ¼ 96,

ZðdÞmax ¼ 0:1 in red. (a) Square channel. (b) V-stripe channel. (For inter-

pretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

Fig. 5. Increasing ZðdÞmax and S. Performance of the channel estimators for

N=K=2, M=64 and nðDÞmax ¼ 0:05, in the following cases: (i) S¼ 64,

ZðdÞmax ¼ 0:05 in blue; (ii) S¼ 80, ZðdÞmax ¼ 0:07 in green; (iii) S¼ 96, ZðdÞmax ¼

0:1 in red. (a) Square channel. (b) V-stripe channel. (For interpretation of

the references to color in this figure legend, the reader is referred to the

web version of this article.)
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and/or the number of OFDM blocks has the dual effect of
separating performance of STFCE from JCE.

Fig. 5 shows the effects of increasing both the delay
spread and the number of OFDM blocks. Parameters are
kept as for the reference scenario, with exception of ZðdÞmax

and S being increased. The main effect is separating
performance of SFTCE from JCE at low SNR, and both SCEs
at high SNR with STFCE keeping better than SFTCE. FCE
results better than TCE for low SNR, and vice versa for
medium and high SNR. Similarly, not shown here for
brevity, increasing both the Doppler spread and the
number of subcarriers has the dual effect of separating
performance of STFCE and SFTCE from JCE, with SFTCE
keeping better than STFCE.

Summarizing what happens in ideal conditions, i.e.
when all transmitted data are available at the receiver,
we can say that: (i) ZðdÞmax4nðDÞmax (quite reasonable in most
scenario) makes STFCE perform better than SFTCE;
(ii) M4S (reasonable for delay-sensitive applications)
makes STFCE perform better than SFTCE; (iii) channel
statistics following a Jakes model for Rayleigh fading (very
common assumption) make SFTCE perform better than
STFCE. It is worth noticing also that SFTCE is to be preferred
for delay-sensitive applications, as at each discrete time a
new OFDM block is available and frequency-domain esti-
mation (first step) can be run, while STFCE needs to wait for
reception of the whole frame before running time-domain
estimation (first step).

Fig. 6 shows the performance of the proposed estima-
tors when inserted within the loop of an iterative receiver
for MIMO-OFDM systems (for more details, see [17,19]).
Simulations refer to a system with K=2 transmit antennas,
N=2 receive antennas, M=64 subcarriers per OFDM block,
S=64 OFDM blocks per frame, Mp=24 and Sp=16 corre-
sponding to a PSR of less than 10% (similar results have



Fig. 6. Performance of an iterative receiver (at fifth iteration) for MIMO-

OFDM systems with N=K=2, M=S=64, Mp=24, Sp=16 over a wireless

channel with ZðdÞmax ¼ 0:01 and nðDÞmax ¼ 0:001. (a) NMSE vs. SNR. (b) BER

vs. SNR.
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been obtained in the range 5–15%). Excluding pilots, each
frame contains 3840 QPSK symbols encoding 3838 infor-
mation bits via a rate-1/2 recursive systematic convolu-
tional code with generators (7, 5)8 and two tail bits to
enforce the final state [15]. Channel coefficients have been
generated with Rayleigh fading statistics according to a
Jakes model [34] with ZðdÞmax ¼ 0:01 and nðDÞmax ¼ 0:001. In a
system operating at 2 GHz with OFDM block duration of
4 ms, such parameters correspond to a scenario with
maximum velocity of 135 km/h and maximum delay of
2:56 ms, i.e. suited for urban environments and vehicular
speeds.

The number of iteration at the receiver is set to 5 and the
performance of a system with Perfect Channel State
Information (PCSI) are shown as a reference term. Also,
for comparison purpose, the performance of analogous
systems using two different channel estimators (denoted
with the initials of the last names of the proposing
researchers) are shown. The first one, namely ESBWB, is
based on [4,5] for channel coefficients corresponding to
OFDM block transmitting pilot symbols and then on linear
interpolation in frequency domain in order to recover the
whole set of channel coefficients. The second one, namely
GN, is based on the first method proposed in [6], with p=1/2
and pilot symbols transmission in order to resolve the
matrix ambiguity. The number of OFDM blocks for pilots
transmission in both ESBWB and GN has been chosen in
order to have the same PSR of the proposed systems, i.e.
Mp=64 and Sp=6. It is apparent how TCE and FCE are unable
to operate in such a scenario, while two-dimensional
processing is necessary to approach PCSI performance. It
is also apparent how STFCE performance is very close to JCE
performance, while unfortunately, SFTCE saturates at
relatively large SNR. Both ESBWB and GN exhibit relatively
bad performance in the considered scenario as they are not
able to deal effectively with the time-varying nature of the
channel. More specifically, GN as well as others blind
channel estimators require a large number of OFDM
symbols to process in order to build reliable statistics of
the received signals. Finally, to have an idea of the proces-
sing time for the joint and serial approaches, the estimation
of one single channel realization, using MATLAB (R2007a)
on a MacBook Pro, took on average 9.2�10�2 and
2.1�10�4 s, respectively.

6. Conclusion

Two low-complexity two-dimensional channel estima-
tors for MIMO-OFDM systems have been designed in order
to exploit in a serial way both time and frequency correla-
tions of the wireless channel via use of a Slepian expansion.
Their complexity and their performance have been com-
pared to an analogous two-dimensional channel estimator
performing joint processing of time and frequency correla-
tions. Performance in terms of NMSE vs. SNR has been
analyzed for the case in which both pilots and data are
available at the receiver, corresponding to the maximum
performance achievable by an iterative receiver. Computer
simulations have shown how the proposed serial estima-
tors achieve comparable performance with the joint esti-
mator, although presenting a much lower computational
complexity. The choice of the system parameters and the
shape of the delay-Doppler scattering function of the
wireless channels have impact on the achieved perfor-
mance. Finally, the estimators have been tested with
excellent results within the loop of an iterative receiver
for MIMO-OFDM systems.

Appendix A. LMMSE estimation for STFCE

A.1. Time-domain LMMSE estimator

In order to simplify notation, we omit the dependence
on subcarrier (m). Denote

^uðDÞ ¼ AðDÞr, ðA:1Þ

J ðDÞðAÞ ¼ EfjuðDÞ�Arj2g, ðA:2Þ

the linear estimate for the Doppler–Slepian coefficients and
the considered cost function, respectively. The estimator is
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found as

AðDÞ ¼ argmin
A
ðJ ðDÞðAÞÞ, ðA:3Þ

i.e. null of

rAðJ ðDÞðAÞÞ ¼ 2EfrrHgAH
�2EfruðDÞHg, ðA:4Þ

thus

AðDÞ ¼ EfuðDÞrHgðEfrrHgÞ
�1: ðA:5Þ

From (38)

EfrrHg ¼ EfðNuðDÞ þwÞðNuðDÞ þwÞHg

¼ EfNCjðDÞN
H
gþs2

wINS, ðA:6Þ

EfuðDÞrHg ¼ EfuðDÞðNuðDÞ þwÞHg

¼ CjðDÞ
~N

H
: ðA:7Þ

The diagonal structure of CjðDÞ is due to the independence of
channels among different transmit antennas and/or receive
antennas, and to the orthogonality of the DPS sequences

EfjðDÞn,k½m,i�jðDÞ�nu,ku ½m,iu�g ¼
lðDÞi

2nðDÞmax

dn,nudk,kudi,iu: ðA:8Þ

The independence of transmit antennas, and due to the
effect of random interleaving, also of OFDM blocks, gives

Efxk½m,s�x�ku½m,su�g ¼
1 k¼ ku,s¼ su,

~xk½m,s� ~x�ku½m,su� else:

(
ðA:9Þ

Some algebra allows to show that

EfNCjðDÞN
H
g ¼ ~NCjðDÞ

~N
H
þH: ðA:10Þ

Substitution of (A.6), (A.7) and (A.10) into (A.5) gives the
estimator

AðDÞ ¼ CjðDÞ
~N

H
ð ~NCjðDÞ

~N
H
þDÞ�1: ðA:11Þ

Matrix inversion lemma gives (46) replacing the inversion
of an NS�NS matrix with the inversion of an NKI�NKI

matrix, saving computations when Ko1=ð2nðDÞmaxÞ. Also,
both CjðDÞ and D are diagonal, thus their inversion is not
computationally prohibitive.

A.2. Frequency-domain LMMSE estimator

In order to simplify notation, we omit the dependence
on receive antenna (n), transmit antenna (k), and Doppler
component (i). Denote

ŵ ¼ BðdÞ/ðDÞ, ðA:12Þ

J ðdÞðBÞ ¼ Efjw�B/ðDÞj2g, ðA:13Þ

the linear estimate for the delay & Doppler–Slepian coeffi-
cients and the considered cost function. The estimator is
found as

BðdÞ ¼ argmin
B
ðJ ðdÞðBÞÞ, ðA:14Þ

i.e. null of

rBðJ ðdÞðBÞÞ ¼ 2Ef/ðDÞ/ðDÞHgBH
�2Ef/ðDÞwH

g, ðA:15Þ
thus

BðdÞ ¼ Efw/ðDÞHgðEf/ðDÞ/ðDÞHgÞ�1: ðA:16Þ

From (60)

Ef/ðDÞ/ðDÞHg ¼ EfðVwþqðDÞÞðVwþqðDÞÞHg

¼VCcVH
þCqðDÞ , ðA:17Þ

Efw/ðDÞHg ¼ EfwðVwþqðDÞÞHg

¼ CcVH: ðA:18Þ

Substitution of (A.17) and (A.18) into (A.16) gives the
estimator

BðdÞ ¼ CcVH
ðVCcVH

þCqðDÞ Þ
�1: ðA:19Þ

Matrix inversion lemma gives (61) replacing the inversion
of an M�M matrix with the inversion of an L� L matrix,
saving computations for ZðdÞmaxo1=2. Also, both Cc and CqðDÞ

are diagonal, thus their inversion is not computationally
prohibitive.

Appendix B. Comparison of the computational
complexity

Assuming a symmetric scenario (a=N=K, g=M=S, and
B¼ ZðdÞmax ¼ n

ðDÞ
max), then from Table 1 we have for the first

contribution

CðIÞJ ¼ CJCE ¼ ag2ðð2BÞ2ðagÞ2þð2BÞ2a3þ1Þ,

CðIÞS ¼ CSTFCE ¼ CSFTCE ¼ agðð2BÞa2gþð2BÞa3þgÞ,

while from Table 2 we have for the second contribution

CðIIÞJ ¼ CJCE ¼ ð2BÞ6ðagÞ6,

CðIIÞS ¼ CSTFCE ¼ CSFTCE ¼ ð2BÞ3ða2g4Þða4þ2BÞ:

Then

CðIÞJ

CðIÞS

	 r1,
CðIIÞJ

CðIIÞS

	 r2,

where the approximation holds when

2B4 1

a2
,

also noticing that

ð2BÞ2a3

ð2BÞ2ðagÞ2
o

maxðaÞ

minðgÞ2
51,

ð2BÞa3

ð2BÞa2g
o

maxðaÞ

minðgÞ
51,

2B
a4

o
2maxðBÞ
minðaÞ4

¼
1

16
51:
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